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Abstract

A central question in metaphor research is what processes
are involved in metaphor comprehension, especially which
of comparison and categorization processes governs metaphor
comprehension. In this paper, I attempt to provide a compu-
tational solution to this problem using comparison and cate-
gorization algorithms based on word vectors in a multidimen-
sional semantic space constructed by latent semantic analysis.
These algorithms receive word vectors for the topic and the ve-
hicle of a metaphor and compute a vector for the metaphorical
meaning. The resulting vectors can be evaluated on the degree
to which they mimic human interpretation of the same meta-
phor. Using this simulation framework, I tested five compet-
ing views of metaphor comprehension: the categorization view
(Glucksberg, 2001), the comparison view (Gentner, 1983) and
three hybrid views — the conventionality view (Bowdle &
Gentner, 2005), the aptness view (Jones & Estes, 2005) and
the interpretive diversity view (Utsumi & Kuwabara, 2005) —
which claim that vehicle conventionality, aptness and interpre-
tive diversity, respectively, determine a shift between both pro-
cesses. The simulation result was that the interpretive diversity
view outperformed the other four views on two different mea-
sures. This result can be seen as computational evidence in
favor of the interpretive diversity view.

Keywords: Computational modeling; Latent semantic analy-
sis (LSA); Metaphor comprehension

Introduction
How metaphors are psychologically comprehended is one of
the most central topics for metaphor research on which a con-
siderable number of studies have been made. Nevertheless,
these studies are divided on this issue; some studies (e.g.,
Gentner, 1983; Gentner, Bowdle, Wolff, & Boronat, 2001)
have proposed that metaphors are processed as comparisons
or analogical mappings, while others (e.g., Glucksberg, 2001;
Glucksberg & Keysar, 1990) have argued that metaphors are
processed as categorizations.

The comparison view by Gentner and her colleagues (Gen-
tner, 1983; Gentner et al., 2001) argues that metaphors (and
analogies) are processed as comparisons consisting of a pro-
cess of structural alignment between representations of the
topic and the vehicle followed by a process of projection of
aligned features or relations into the topic. For example, in
comprehending the metaphor “A rumor is a virus”, two con-
cepts rumor and virus are aligned, salient alignments such as
ones about contagion or infection prevention are found, and
features and relations inferred from such alignments are pro-
jected into the topic. Note that the initial alignment process
is symmetric (i.e., the products of the process do not change

even if the topic and the vehicle are reversed), while the sub-
sequent projection process is asymmetric (i.e., directional).
Hence, the intuition that the reversed metaphor “A virus is a
rumor” seems meaningless can be attributed to the projection
process, not to the alignment process.

On the other hand, the categorization view by Glucks-
berg and his colleagues (Glucksberg, 2001; Glucksberg &
Keysar, 1990) claims that metaphors are seen as categoriza-
tion (i.e., class-inclusion) statements expressing that the topic
is a member of an abstract superordinate category exemplified
by the vehicle. For example, the metaphor “My job is a jail”
is comprehended so that the topic my job is categorized as
an ad hoc category like “unpleasant and confining things” to
which the vehicle jail typically belongs. Note that the topic
also plays an important role in metaphor comprehension; it
constrains dimensions by which it can be characterized. In
the case of the above metaphor, my job facilitates attribution
of features related to tasks and jobs, while blocking out irrel-
evant features such as ones related to jail building.

Very recent studies have tried to reconcile these two op-
posite views of metaphor comprehension into a coherent me-
taphor theory. However, they disagree on how both views
are reconciled, in other words, what property of metaphor de-
termines a shift between both processes. Bowdle and Gen-
tner (2005) claim that it is vehicle conventionality that deter-
mines such shift; their career of metaphor theory argues that,
although metaphors are basically processed as comparisons,
conventional metaphors are processed as categorizations by
accessing stored categories, which are conventionalized by
repeated figurative use. Jones and Estes (2005, in press) argue
against the career of metaphor view and advocated that meta-
phor aptness mediates both processes by empirically demon-
strating that apt metaphors were more likely to be processed
as categorizations than less apt metaphors. Glucksberg and
Haught (in press) also reported that novel but apt metaphors
were easy to comprehend in categorization form than in com-
parison form, and concluded that the aptness or the quality of
metaphors determines the choice of comprehension strategy.

Against these views, Utsumi and Kuwabara (2005) and
Utsumi (2006) claim that interpretive diversity determines
whether metaphors are processed as comparisons or catego-
rizations. Interpretive diversity is a measure of the seman-
tic richness of literal or figurative utterances including meta-
phors; it is high to the extent that more features constitute the
utterance meaning and that their relative saliences are more
evenly distributed. The interpretive diversity view then ar-
gues that diverse metaphors are comprehended by the pro-
cess of categorization, but less diverse metaphors with only
a few features require the process of comparison because the
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process of categorization is often expected to attribute many
features of a category to the members of that category.

The purpose of this paper is to provide a convincing an-
swer to the question of which of these metaphor views is
most plausible by means of computer simulation. For this
purpose, this study presents a computational model of com-
parison and categorization processes using a semantic space
constructed by latent semantic analysis (LSA) (Landauer &
Dumais, 1997). This study then examines how well a com-
putational model embodying each metaphor view mimics hu-
man comprehension by comparing the interpretations of me-
taphors obtained by the computer simulation with human in-
terpretations of the same metaphors obtained in a psycho-
logical experiment (Utsumi, 2005). The metaphor view that
achieves the best simulation performance can be seen as the
most plausible view.

My study essentially differs from other computational
studies of metaphors (e.g., Fass, 1991; Martin, 1992; Thomas
& Mareschal, 2001) in that they did not test the validity of
their models in a systematic or exhaustive way, nor did they
make a new contribution to the psychological or cognitive
theory of metaphor. Kintsch (2000) proposes a computational
model of metaphor comprehension based on LSA. His predi-
cation algorithm is also used in this study as a model of cat-
egorization, but he did not test its psychological validity as
a model of metaphor comprehension. In addition, his study
does not allow for the fact that some metaphors are com-
prehended as comparisons. Lemaire and Bianco (2003) also
employ LSA to develop a computational model of referential
metaphor comprehension, but they do not address how well it
mimics human interpretations; they only showed that it mim-
ics processing time difference between when supporting con-
text is provided and when it is not provided. Moreover, their
model is theoretically less well motivated.

Computational Model
LSA Model
LSA is a method for automatically constructing a high-
dimensional semantic space from the statistical analysis of
huge corpus of written texts. LSA was originally proposed as
a document indexing technique for automatic information re-
trieval, but several studies (Landauer & Dumais, 1997) have
shown that LSA successfully mimics many human behaviors
associated with semantic processing.

The basic idea behind LSA is that semantically similar
words are likely to occur in semantically similar paragraphs
and semantically similar paragraphs are likely to include se-
mantically similar words. This mutual relation is represented
by a word-paragraph matrix, and the dimension of the matrix
is reduced, often to 200-400, by means of a linear algebra
technique known as singular value decomposition.

In a constructed semantic space, each word x is represented
as a vector v(x). Hence similarity sim(x, y) between words
x and y can be computed as the cosine cos(v(x), v(y)) of
the angle formed by two word vectors. For example, using a
semantic space of Japanese words used in this paper, similar-
ity between computer (“konpyuta” in Japanese) and Windows
(“uindouzu” in Japanese; Microsoft’s OS) is computed as .63,
while similarity between computer and window (“mado” in
Japanese; glass in the wall) is computed as –.02.

Comparison and Categorization Models
In an LSA model, a vector representation v(s) of a piece of
text s (e.g., phrase, clause, sentence, paragraph) consisting of
constituent words w1, · · · , wn can be defined as a function
f(v(w1), · · · , v(wn)). 1 In accordance with this formaliza-
tion, metaphor comprehension is modeled as computation of
a vector v(M) = f(v(wT ), v(wV )) representing the mean-
ing of a metaphor M with the topic wT and the vehicle wV .

Then what we have to think next is what function is ap-
propriate for better simulating the target behavior, in this case
the categorization process and the comparison process. In the
following description, I use the phrase “n neighbors of a word
x” to refer to words with n highest similarity to x, and denote
a set of n neighbors of x by Nn(x).

Comparison The algorithm of computing a metaphor vec-
tor v(M) by the process of comparison is as follows.

1. Compute a set of k words (i.e., alignments between the
topic wT and the vehicle wV ) as Ni(wT ) ∩ Ni(wV ) by
incrementing i by 1 until |Ni(wT ) ∩ Ni(wV )| reaches k.

2. Compute a metaphor vector v(M) as the centroid of
v(wT ) and k vectors computed at Step 1.

Step 1 corresponds to the alignment process and thus it is
symmetric, while Step 2 corresponds to the projection pro-
cess and thus it is asymmetric.

Categorization The algorithm of computing a metaphor
vector v(M) by the process of categorization is as follows.

1. Compute Nm(wV ), i.e., m neighbors of the vehicle wV .

2. Selects k words with the highest similarity to the topic wT

from Nm(wV ).

3. Compute a vector v(M) as the centroid of v(wT ), v(wV )
and k vectors selected at Step 2.

This algorithm is identical to Kintsch’s (2000) predication al-
gorithm. As Kintsch suggests, this algorithm embodies the
categorization view in that a set of k words characterizes an
abstract superordinate category exemplified by the vehicle.

Simulation Experiment
Method
Human experiment The materials used in the experiment
were 40 Japanese metaphors of the form “An X is a Y”. They
were created from 10 groups each of which consisted of two
topic words and two vehicle words. For example, from the
two topics life (“jinsei”) and love (“ai”) and the two vehi-
cles journey (“tabi”) and game (“gemu”), the following four
metaphors were created: “Life is a journey” (“Jinsei ha tabi
da”), “Life is a game” (“Jinsei ha gemu da”), “Love is a jour-
ney” (“Ai ha tabi da”) and “Love is a game” (“Ai ha gemu

1This formalization can be easily extended to involve contex-
tual effects on semantic processing; the vector v(s) can be defined
as f(v(w1), · · · , v(wn), v(c)) where v(c) represents a vector for
context of s. This paper, however, does not address contextual ef-
fects of metaphor comprehension, because examining the mecha-
nism of metaphor comprehension without context accentuates pro-
cessing difference, as the existing empirical studies have done.
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Figure 1: “Life is a game” metaphor

da”). Topic and vehicle words were selected from an experi-
mental study on Japanese metaphor (Kusumi, 1987) and a list
of words frequently used for Japanese metaphors (Nakamura,
1995).

Eighty undergraduate students of Japan Women’s Univer-
sity, who were all native speakers of Japanese, were assigned
to 10 metaphors that shared neither vehicles nor topics. They
were asked to consider the meaning of each metaphor and to
list three or more features of the topic that were being de-
scribed by the vehicle of the metaphor. For the listed features
of each metaphor, closely related words or phrases were com-
bined into the same feature, and any feature listed by only one
participant was dropped. For each feature w i of a metaphor
M , the degree of salience sal(wi, M) is then assessed as the
number of participants who listed that feature, i.e., the num-
ber of tokens. These features were used as landmarks with
respect to which model’s interpretation and human interpre-
tation were compared for evaluation. For example, as shown
in the bar graph of Figure 1, eight features were listed for the
metaphor “Life is a game”, and the feature pleasant had the
highest salience, i.e., the number of participants who listed it
was largest.

Interpretive diversity of each metaphor M was then calcu-
lated as Shannon’s entropy H defined by the following for-
mula (Utsumi, 2005).

H = −
n∑

i=1

pi log pi (1)

pi =
sal(wi, M)∑n

j=1 sal(wj , M)
(2)

For example, the interpretive diversity of the metaphor “Life
is a game” in Figure 1 is calculated as 3.13, given that the bar
length for a feature wi corresponds to pi. The mean interpre-
tive diversity across 40 metaphors was 3.01 (SD = 0.42).

For vehicle conventionality and metaphor aptness, an addi-
tional 144 Japanese undergraduate students at the University
of Electro-Communications were recruited and assigned to 10
metaphors. Half of them were asked to rate how apt each me-
taphor was on a 7-point scale ranging from 1 (not at all apt)
to 7 (extremely apt), and the other half of them were asked
to rate how conventional the most salient meaning of each

metaphor (e.g., pleasant for “Life is a game”) was as an alter-
native sense of the vehicle term (e.g., game) on a scale of 1
(very novel) to 7 (very conventional). These ratings were then
averaged across participants for each metaphor. The mean
aptness rating across 40 metaphors was 3.70 (SD = 1.07) and
the mean conventionality rating was 4.46 (SD = 1.19).

Computer simulation The semantic space used in the sim-
ulation was based on a Japanese corpus of 251,287 para-
graphs containing 53,512 different words, which came from
a CD-ROM of Mainichi newspaper articles (4 months) pub-
lished in 1999. The number of dimensions of the semantic
space was set to 300, and thus all words were represented as
300-dimensional vectors.

In the computer simulation, for each of the 40 metaphors,
two metaphor vectors were computed: one by the comparison
algorithm and another by the categorization algorithm. After
that, for all the features wi, · · · , wn listed for that metaphor
M in the human experiment, similarity to the metaphorical
meaning sim(wi, M) was computed separately for two meta-
phor vectors. Features with higher similarity to the metaphor-
ical meaning can be seen as more relevant to the interpretation
of the metaphor. In Figure 1, for example, the word pleasant
has the highest similarity to the metaphor vector by catego-
rization, while the word interesting has the highest similarity
to the metaphor vector by comparison.

Evaluation measures To evaluate the ability of the model
to mimic human interpretations, I use the following measures.

• Kullback-Leibler divergence (KL-divergence):

D =
n∑

i=1

pi log
pi

qi
(3)

qi =
sim(wi, M) − minx sim(x, M)∑n

j=1{sim(wj , M) − minx sim(x, M)} (4)

It measures how well a model simulates the salience dis-
tribution of features relevant to human interpretation, or in
other words, the degree of dissimilarity between human in-
terpretation and computer’s interpretation. Hence lower di-
vergence means better performance. In Figure 1, for exam-
ple, KL-divergence between the salience distribution of hu-
man interpretation and the similarity distribution of com-
puter interpretation is 0.190 for the categorization model
and 0.227 for the comparison model, thus suggesting that,
in this case, the categorization model better mimics human
interpretation than the comparison model.

• Spearman’s rank correlation:

r = 1 − 6
∑n

i=1 d2
i

n3 − n
(5)

di = rank(sim(wi, M)) − rank(sal(wi, M)) (6)

It measures how strongly the computed similarity of rel-
evant features is correlated with the degree of salience of
those features. A higher correlation means that the model
yields better performance. In Figure 1 the categorization
model yields a higher correlation (r = .21) than the com-
parison model (r = −.07), which again indicates that the
categorization model is superior to the comparison model.
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Table 1: KL-divergences and rank correlations of the categorization model and the comparison model

Interpretive diversity Conventionality Aptness
All metaphorsa Highb Lowc Highd Lowe Highf Lowg

KL divergence

Categorization (m=250, k=5) 0.260 0.185 0.344 0.295 0.214 0.275 0.248
Comparison (k=3) 0.270 0.219 0.327 0.310 0.216 0.283 0.260

Rank correlation

Categorization (m=250, k=7) 0.222 0.237 0.206 0.139 0.334 0.262 0.189
Comparison (k=5) 0.197 0.154 0.244 0.122 0.298 0.252 0.152

Note. Boldfaces indicate that the corresponding model (i.e., categorization model or comparison model) achieved better
performance over the other model. Boxed numbers indicate that the hybrid view in question predicts that the correspond-
ing model should achieve better performance. an=40. bn=21. cn=19. dn=23. en=17. f n=18. gn=22.

Result

For each of the 40 metaphors, KL-divergences and rank cor-
relations were computed using the metaphor vector by the
categorization model with any of the combination of m =
100, 150, · · · , 500 and k=1, · · · , 10, and using the metaphor
vector by the comparison model with k = 1, · · · , 10. These
values were then averaged across metaphors. Concerning
KL-divergence, the categorization model achieved the best
performance when m = 250 and k = 5, and the comparison
model did the best performance when k=3. Concerning rank
correlation, the combination of m = 250 and k = 7 was op-
timal for the categorization model and k =5 was optimal for
the comparison model. Table 1 lists mean divergences and
correlations calculated using these optimal parameters.

As the second column of Table 1 shows, the categorization
model, on average, outperformed the comparison model on
both measures. It suggests that the categorization view may
be more plausible than the comparison view.

Furthermore, in order to examine the plausibility of the
three hybrid views, I divided the 40 metaphors into two
groups according to their mean interpretive diversity (i.e.,
high-diversity and low-diversity), their mean conventionality
rating (i.e., high-conventionality and low-conventionality), or
their mean aptness rating (i.e., high-aptness and low-aptness).
And I calculated mean KL-divergences and mean rank corre-
lations for each of these groups, which are shown in the third
through the last columns of Table 1.

The simulation result concerning interpretive diversity was
that for high-diversity metaphors the categorization model
yielded better performance (i.e., lower divergence and higher
correlation) than the comparison model, while for low-
diversity metaphors the comparison model achieved better
performance. This result is fully consistent with the inter-
pretive diversity view (Utsumi & Kuwabara, 2005; Utsumi,
2006). (Note that boxed boldfaces are the sign of consistency
between the simulation result and the theoretical prediction.)
In addition, Figures 2 and 3 show that this simulation result
is general, not specific to the particular value of the param-
eters. For example, Figure 2 (a) illustrates that, in the case
of high-diversity metaphors, the comparison model (denoted
by filled triangles connected by a dotted line) showed higher
KL-divergence and thus worse performance than the catego-
rization model (denoted by other small figures), regardless
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Figure 2: Simulation results in terms of Kullback-Leibler di-
vergence for various values of the parameters m and k

of values of the parameters m and k. On the other hand,
Figure 2 (b) shows the reverse pattern; the comparison model
achieved lower divergence and thus better performance than
the categorization model for any combinations of m and k
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Figure 3: Simulation results in terms of rank correlation for
various values of the parameters m and k

values. Figure 3(a)-(b) shows that this result holds true for
rank correlations.

Simulation results concerning vehicle conventionality and
aptness are not consistent with the theoretical predictions.
The conventionality view and the aptness view predict that the
process of comparison is required for comprehending novel
metaphors and less apt metaphors, respectively, but as the
fifth through the last columns of Table 1 show, the categoriza-
tion model outperformed the comparison model even when
metaphors were less conventional or less apt. Figures 2 and
3 also shows that for almost all the combinations of param-
eters m and k, the categorization model yielded lower di-
vergence for low-aptness metaphors (Figure 2(f)) and higher
correlation for low-conventionality metaphors (Figure 3(d))
or low-aptness metaphors (Figure 3(f)), which contradicts the
predictions. What is worse is that, as Figures 3(c) and 3(e)
show, many rank correlations of the categorization model
were lower than those of the comparison model when con-
ventional or apt metaphors were considered.

To quantitatively compare the performance among the five
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Figure 4: Comparison among the competing metaphor views

competing views, I calculated a mean KL-divergence and
rank correlation for each hybrid view by summing up the
scores of the categorization model for metaphors that are pre-
dicted to be processed as categorizations by that view and the
scores of the comparison model for those that are predicted
to be processed as comparison. For example, the mean KL-
divergence of the interpretive diversity view was calculated
from the divergences of the categorization model for high-
diversity metaphors and the divergences of the comparison
model for low-diversity metaphors.

Figure 4 shows mean divergences and correlations of the
five competing views that are averaged over the parameter
k (m = 250). The interpretive diversity view achieved the
best performance on both measures, thus suggesting that the
interpretive diversity view is the most plausible theory of me-
taphor comprehension. The conventionality view was the
second-best one on the measure of divergence, but it was the
worst on the measure of rank correlation. The aptness view is
much less plausible given that its performance fell below the
performance of the categorization view on both measures.

Discussion
The LSA simulation result presented in this paper can be seen
as computational evidence in favor of the interpretive diver-
sity view, but here it is worth discussing the validity of the
simulation result in more detail.

An important issue to discuss is the psychological plausi-
bility of the categorization model and the comparison model
that produced the simulation result. In general, a categoriza-
tion statement “An X is a Y” is processed so that, due to
default inheritance, features characterizing Y-ness are high-
lighted unless they are obviously irrelevant to X, and at
the same time other salient features of X are downplayed.
Kintsch (2001) showed with many examples that the predi-
cation algorithm (i.e., the categorization model in this paper)
works in this way. For example, the vector for “a pelican is a
bird” computed by this algorithm becomes more similar to the
features related to the birdness such as sing beautifully than
the original vector of pelican, and less similar to irrelevant
features to the birdness such as eat fish and sea. On the other
hand, a comparison statement “An X is like a Y” is reasonably
assumed to be comprehended so that only the features shared
by X and Y are highlighted without other Y-ness features be-
ing highlighted. Indeed the comparison algorithm proposed
in this paper works better than the categorization algorithm
for literal comparison statements. For example, as Figure 5
shows, shared features such as swim and fish are more similar
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Figure 5: Literal comparison “A whale is like a dolphin”
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Figure 6: Simulation results by the different semantic space

to the vector for “a whale is like a dolphin” computed by the
comparison algorithm than to the vector by the categorization
algorithm. In contrast, dolphinness features like intelligent
and therapy which are not shared by whales are less similar
to the vector by the comparison algorithm than to the vector
by the categorization algorithm.

Another issue on the plausibility of the model is the gen-
erality of the simulation result, i.e., whether other LSA se-
mantic spaces derived from different corpora produce the
same simulation result. To address this issue, I constructed
a different 300-dimensional semantic space from a corpus of
Japanese famous novels “Shincho Bunko No 100 Satsu” and
conducted the same simulation experiment. Figure 6 depicts
the simulation result in the same way as in Figure 4. As in the
case of the newspaper corpus, the interpretive diversity view
again achieved the best performance on both measures among
the five views when mean divergences and correlations were
calculated using the optimal values of the parameters.

These consistent results strengthen the validity of the con-
clusion of this paper that the interpretive diversity view is
the most plausible theory of metaphor comprehension. My
research group is also trying to apply this computational
experimentation methodology to metaphor-simile distinction
and other types of metaphors like predicative metaphors and
adjective-noun metaphors.
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